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Abstract— In-memory computing with analog non-volatile 

memories (NVMs) can accelerate both the in-situ training and 

inference of deep neural networks (DNNs) by parallelizing 

multiply-and-accumulate (MAC) operations in the analog 

domain. However, the in-situ training accuracy suffers from 

unacceptable degradation due to undesired weight-update 

asymmetry/nonlinearity and limited bit precision. In this 

work, we overcome this challenge by introducing a compact 

Ferroelectric FET (FeFET) based synaptic cell that exploits 

hybrid precision for in-situ training and inference. We 

propose a novel hybrid approach where we use modulated 

“volatile” gate voltage of FeFET to represent the least 

significant bits (LSBs) for symmetric/linear update during 

training only, and use “non-volatile” polarization states of 

FeFET to hold the information of most significant bits 

(MSBs) for inference. This design is demonstrated by the 

experimentally validated FeFET SPICE model and co-

simulation with the TensorFlow framework. The results show 

that with the proposed 6-bit and 7-bit synapse design, the in-

situ training accuracy can achieve ~97.3% on MNIST dataset 

and ~87% on CIFAR-10 dataset, respectively, approaching 

the ideal software based training.   

I. INTRODUCTION 
DNNs have made remarkable advances in cognitive tasks 

such as image and speech recognition. However, the energy-
efficiency and speed of DNN training is highly limited by 
moving the data back and forth between the memory and the 
processor in conventional von Neumann hardware. To 
overcome this challenge, in-memory computing, where 
computing is done at the location of the data storage, has been 
proposed to accelerate the computation. To store a large 
number of DNN weights on-chip, logic process compatible 
NVM devices are attractive where synaptic weights are 
encoded as their analog conductance values. There are array-
level experimental demonstrations for training/inference with 
resistive random-access memory (RRAM) [1-2] and phase 
change memory (PCM) [3]. However, training with these 
NVMs suffers from unacceptable accuracy degradation due to 
various non-idealities including limited dynamic range, 
variation, and most importantly asymmetric/nonlinear weight 
update [4]. For example (Fig. 1), in filamentary RRAM [5], 
the excessive asymmetry/nonlinearity between positive and 
negative update leads to a poor accuracy ~41% for MNIST 
dataset. While interfacial RRAM [6] exhibits improved 
nonlinearity with higher accuracy ~73%, the programming 
pulse width is on the orders of ms due to the slow diffusion 
process of ions or vacancies. A recent discovery of partial 
polarization switching in ferroelectric-FET (FeFET) [7] 
provides highly symmetric weight update leading to an 

accuracy ~90%, but “non-identical” pulses must be applied for 
conductance tuning, which increases the peripheral circuitry 
complexity. Despite recent progress, these hardware 
implementations are not competitive with the software 
training accuracy ~98% even for MNIST dataset.   

Motivated by the observation that in a DNN algorithm a 

relatively higher precision (larger than 6-bit) is necessary 

during training to accumulate the incremental weight change, 

while a lower precision (less than 2-bit) is sufficient during 

inference to achieve a reasonably good accuracy [8], we 

introduce a synaptic weight cell design in this work that 

combines two CMOS transistors and one FeFET (2T1F) for 

training and inference with hybrid precision. During training, 

the “volatile” modulated gate voltage of FeFET is used to 

represent LSBs for symmetric and linear update. After training 

process is complete, the information of LSBs is discarded, 

only MSBs are preserved by “non-volatile” polarization states 

of FeFET for inference. We demonstrate a 6-bit/7-bit synapse 

design (2-bit MSBs + 4-bit/5-bit LSBs) for MNIST/CIFAR-10 

dataset and benchmark with a LeNet-5-like/VGG-like 

convolutional neural network (CNN). The SPICE simulation 

result with the experimental validated FeFET model and 

TSMC 65nm PDK is coupled with the TensorFlow 

framework, showing that the learning accuracy could achieve 

~97.3%/~87%, approaching the ideal software training. 

II. 2T1F SYNAPTIC WEIGHT CELL DESIGN 

A.  2T1F Analog Synaptic Weight Cell 
Fig. 2-3 show the schematic and fundamental principle of 

the proposed 2T1F synaptic weight cell. The FeFET gate 
capacitor serves as an analog memory for LSBs, which is 
charged/discharged by the corresponding pull-up pFET and 
pull-down nFET. Thus, the LSBs of the weight can be 
encoded to the channel conductance of the FeFET by 
modulating the gate voltage (VG) while keeping the FeFET 
working in the triode region as shown in Fig. 3(a). During 
weight update, pulses are applied to the gate of pFET/nFET 
for positive/negative updates while keeping these two 
transistors working in saturation region to ensure the 
charging/discharging current is independent of VG. With the 
pulse amplitudes that generate the balanced charging and 
discharging current, the positive/negative update of LSBs is 
expected to be symmetric. The MSBs can be encoded to 
different FeFET polarization (thus channel conductance) states 
without overlapping LSBs within each MSB state. For 
example, assuming 2-bit MSBs (i.e., 4 polarization states) as 
shown in Fig. 3(b), the VG dynamic range [VA, VB] which is 
constrained by the linear region overlap of multiple 
polarization states, determines the number of update steps 
(i.e., the bitwidth of LSBs). Fig. 3(c) illustrates different 
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scenarios of updating LSBs and MSBs. If VG increases 
beyond VB, the consequential read-out current ID will be larger 
than the reference current (ref. 2 in Fig. 3), requiring a 
programming towards S2 state to transfer the weight 
information to MSBs, then the LSBs can be continuously 
updated within S2 state and VG prefers to be reset to the certain 
level that maintains the same ID to prevent the information loss 
of LSBs. Similarly, if ID decreases below ref. 2, the FeFET 
requires a programming towards S1 state.  

With the proposed synaptic weight cell, the modified DNN 

training flow is shown in Fig. 4. For each training batch, 

update LSBs by applying certain pulses to modulate VG based 

on the value of ΔW calculated through stochastic gradient 

descent (SGD) based backpropagation algorithm [8]. Due to 

the limited VG dynamic range and capacitor leakage, the 

information of LSBs needs to be occasionally transferred to 

MSBs to prevent the information loss. As a result, for every N 

batches, we need to transfer the weight, i.e., program the 

FeFET to the corresponding state according to the read-out 

current level. After the weight-transfer, VG prefers to be reset 

to the certain level that maintains the same channel 

conductance to recover the residual information of LSBs. 

However, this step requires a high-precision ADC (equals the 

total bitwidth of weights) which is too power- and area-hungry 

in practice. Therefore, we only reset the VG to (VA+VB)/2 to 

avoid high-precision ADCs at the expense of inducing 

possible residual errors. The impact of these errors on learning 

accuracy is investigated in Section III. 

B. Implementation of 2-bit MSBs + 4-bit LSBs Synapse 

First, we demonstrate the implementation of 6-bit synapse 

(2-bit MSBs + 4-bit LSBs) as an example. The FeFET utilizes 

multi-domain polarization switching dynamics in ferroelectric 

Hf0.5Zr0.5O2 (HZO) gate dielectric to gradually tune the 

threshold voltage of the underlying channel by the application 

of programming pulses to the gate. Fig. 5 shows the measured 

ID-VG characteristics of our fabricated HZO FeFET with 

tunable Vth. We adopt the FeFET SPICE model from our prior 

work [9], where the model consists of a conventional 

MOSFET model by BSIM 4, and a ferroelectric switching by 

Preisach dynamic model. The SPICE model accurately 

captures the experimental P-V loop (Fig. 6). Fig. 7(a) shows 

the pulse scheme and the simulated corresponding remnant 

polarization charge that result in 4 states shown in Fig. 7(b), 

which serve as 2-bit MSBs. The dynamic range of VG is set to 

be [1.44V, 1.76V], with a pulse width of 5ns that leads to ΔVG 

of 20mV per update pulse, 4-bit LSBs can be achieved. The 

voltage bias schemes for update/read operations of the 2T1F 

weight cell are summarized in Fig. 8. The equivalent weight 

update curve of the 6-bit synapse is shown in Fig. 9. However, 

because the charging and discharging current cannot always 

be the same in practical circuits, ΔVG per update pulse is not 

ideally the same at different VG, resulting a slight nonlinearity 

as shown in Fig. 10, but the weight update is still symmetric as 

the maximum difference of ΔVG between positive update and 

negative update is only ~5% of one LSB step. The 

nonlinearity is observed to be less than +1/+1 as defined in 

Fig. 11, which is much better than those asymmetric and 

nonlinear NVM devices [4] as compared in Fig. 12. 

III. RESULTS AND DISCUSSION 
We benchmark the performance of the proposed hybrid 6-

bit 2T1F synapse by incorporating the aforementioned 
synaptic characteristics into TensorFlow simulation with a 
CNN, which is a variation of LeNet-5 (Fig. 13), for MNIST 
dataset. The learning accuracy of ~98.5% from ideal software 
training with 6-bit weights is utilized as the baseline. With the 
slight nonlinearity in 2T1F design, the accuracy can achieve 
~98.3% (Fig. 14). Then we investigate the impact of residual 
errors caused by occasional weight-transfer on the accuracy. 
Fig. 15 shows the simulation results of VG leakage with 
different starting VG, the inset figure shows that it takes 
1.64ms for VG to leak by one LSB step (20mV) in the worst 
case (starting VG = 2V). Assuming the training time per batch 
(forward + backward + update, batch size is 100) is ~7 µs, the 
maximum transfer interval becomes ~230 batches. Fig. 16 
shows the training accuracy curve with transfer interval of 
100, 200, and 300 batches. When the transfer interval is 100 
batches, the accuracy can only achieve ~96%, when the 
transfer interval is 200 batches and 300 batches, the accuracy 
can reach ~97.3% and ~98.0% respectively, showing slight 
degradations compared to 98.3%. The reason is that if the 
absolute accumulated ΔW within one transfer interval is less 
than half of one MSB step (8 LSB steps), which fails to trigger 
the MSBs state change, the weight will be reset back after 
weight transfer as the VG will be reset to (VA+VB)/2 as 
aforementioned. Fig. 17 shows the percentage of effective 
|ΔW| (>8 LSB steps) during first, second, and third weight-
transfer operations as an example. A larger interval leads to a 
larger percentage of effective |ΔW|. Given the fact that 
weights tend to be stabilized through training process, a 
dynamic transfer interval (increasing through training) is 
preferred to fully recover the accuracy. Fig. 18 shows the 
impact of FeFET polarization state variation on the learning 
accuracy. A small variation (<2.5%) does not hurt the 
accuracy as it may help on compensating the residual errors 
caused by non-ideal weight-transfer. The degradation becomes 
unacceptable when variation exceeds 5%. By directly reducing 
the LSBs tuning step to 10 mV, which results in a 7-bit 
synapse (2-bit MSBs + 5-bit LSBs), we estimated the learning 
accuracy on the more complex CIFAR-10 dataset with a 
VGG-like CNN. Fig 19 shows that the accuracy can achieve 
~87% without noise, and ~88% with noise in one LSB step 
due to the random fluctuation of a 10mV step in practice.  

Fig. 20 compares this work to recent works with “volatile” 
capacitor-based design. The work [10] using 1T1C is totally 
volatile thus could not support inference. While the work [11], 
which combines 2 PCM cells with a 3-transistor-1-capacitor 
structure, is suitable for both training and inference, it has 
relatively larger cell size and higher programming energy. 

IV. CONCLUSION 

We introduce a compact 2T1F synaptic weight cell design 

that combines the benefits of capacitor-based symmetric 

weight update for LSBs during training and NVM based long-

term weight storage for MSBs during inference. A 6-bit/7-bit 

synapse is demonstrated for MNIST/CIFAR-10 dataset, which 

can achieve accuracy of ~97.3%/~88%, approaching that of 

the ideal software based training.   
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Analog Synapse Devices 

Type Filamentary RRAM Interfacial RRAM Ferroelectric FET This work 

Weight update 

behavior 

 
[5] 

 
[6] 

 
[7]  

Symmetry Low Medium Medium High  

Programming Identical Pulses Identical Pulses Non-identical Pulses Identical Pulses  

Speed 10-100ns 100µs-10ms 50ns-100ns 5ns  

MNIST 
Accuracy 

~41% ~73% ~90% ~97.3%   

Fig. 1. Comparison of analog synapses for on-chip in-situ learning. The proposed 2T1F design 

exhibits the desired characteristics including highly symmetric/linear weight update, fast and 

identical update pulses, allowing fast training of neural networks with high accuracy. 

 
Fig. 2. Schematic of the proposed 2T1F 

weight cell design. The LSBs of weight 

are encoded to the conductance of the 

FeFET by modulating VG while the 

MSBs are encoded to different FeFET 

polarization states. 
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Fig. 3 (a) The LSBs of weight are linearly encoded to the conductance value of the FeFET by modulating the gate voltage while keeping the 

FeFET in the triode region. (b) The MSBs are encoded to different FeFET polarization states without overlapping of LSBs within each MSB 

state. (c) Illustration of updating LSBs within a FeFET polarization state and updating MSBs depending on the corresponding read-out current 

level. VG is preferred to be reset to the certain level to maintain the same ID after the update of MSBs to prevent the information loss of LSBs. 

 
Fig. 4. The training flow chart. For each 

training batch, update LSBs by applying 

charging/discharging pulses to modulate VG 

based on the value of ΔW. For every N 

batches, program the FeFET to the 

corresponding polarization state according 

to the read-out current level, namely 

weight-transfer. 

 

Weight initialization 

For each training batch, 
calculate ΔW through SGD

Update LSBs of weights by 
modulating Vg of the FeFET 

through charging and 
discharging pulses Read out cell current

For every N batches

Update MSBs by programming 
the FeFET to the 

corresponding state according 
to the current level

Reset Vg accordingly

Weight-transfer to MSBs

Update LSBs  
Fig. 7. (a) The pulse scheme and the corresponding remnant 

polarization charge that generates 4 FeFET states. (b) 

Simulated ID vs. VG curve of different FeFET states. 4 

polarization states serve as 2-bit MSBs. The dynamic range of 

VG is set to be [1.44V, 1.76V], with a pulse width of 5ns that 

leads to ΔVG of 20mV per update pulse, 4-bit LSBs can be 

achieved. 
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Fig. 6. (a) Schematic of partially switching of 

HZO ferroelectric domains. (b) The FeFET 

model [9] consists of the conventional 

MOSFET modeled by BSIM 4 and the 

ferroelectric modeled by the dynamic Preisach 

model. (c) The model accurately captures the 

experimental P-V loop. 
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Fig. 8. The voltage bias scheme for different 

operations for 2T1F weight cell. For the update 

of MSBs, V1/V2 means the voltage for 

program/erase operation respectively. For the 

update of LSBs, V1/V2 means the voltage for 

charging and discharging, respectively. 

 
Fig. 9. The equivalent conductance 

update curve of the 6-bit synapse 

realized by 2T1F weight cell, showing 

much improved symmetry and linearity 

between positive update and negative 

update.  
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Fig. 5. Measured ID-VG 

characteristics of our fabricated 

HZO FeFET [9] for program 

voltage from 2V to 4V, showing 

tunable threshold voltage. 
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Fig. 10. The ΔVG per pulse during positive 

update and negative update as a function of 

VG. The maximum difference of ΔVG between 

two directions is only ~1mV (5% of one LSB 

step), suggesting symmetry in weight update. 

Maximum difference ~1mV

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
18

19

20

21
D

V
G
/p

u
ls

e
 (

m
V

)

VG (V)

 positive update

 negative update

 
Fig. 11. Analog NVM device behavioral 

model [4] of the nonlinear/asymmetric 

weight update. The nonlinearity degree is 

labeled from +6 to -6. 

 
Fig. 12. Comparison of the asymmetry/linearity 

between this work and other NVM devices [4]. 

The nonlinearity of this work is fitted using the 

same model in Fig. 11 as used by other works. 
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Fig. 13. Benchmark with a CNN on MNIST      

dataset. The adopted CNN is a variation of 

LeNet-5 with 32C5-MP2-64C5-MP2-512FC-

10 configuration. 
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Fig. 14. The MNIST learning accuracy can 

achieve 98.3% with the slight nonlinearity of 

the proposed 2T1F design, showing 0.2% 

degradation compared to the ideal software 

training with 6-bit weights. 
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Fig. 15. (a) Circuit setup for leakage simulation. (b) Simulation results of VG leakage with 

different starting VG. The inset figure shows that it takes 1.64 ms for VG to leak by one LSB 

step (20mV) in the worst case (starting VG = 2V). Assuming the training time is ~7 µs/batch, 

the maximum transfer interval becomes ~230 batches, limited by the leakage.  
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Fig. 18. The impact of FeFET polarization 

state variation on the MNIST learning 

accuracy. A small variation does not hurt the 

accuracy as it may help on compensating the 

residual errors caused by non-ideal weight-

transfer. The degradation becomes 

unacceptable when variation exceeds 5%. 
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Fig. 16. The MNIST learning accuracy with 

weight- transfer interval of 100, 200, and 300 

batches, achieving ~96.0%, ~97.3%, and 

~98.0% respectively.   
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Fig. 17. The percentage of effective |ΔW| (>8 

LSB steps) during first, second, and third 

weight-transfer with different number of 

interval batches. A larger interval leads to a 

larger percentage of effective |ΔW| to be 

accumulated, which benefits the training. 
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Fig. 19. The learning accuracy on CIFAR-

10 dataset could achieve 87% w/o noise and 

88% w/ noise using the proposed 7-bit 

synapse with a VGG-like CNN. 
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Fig. 20. Comparison between this work and recent 

works with the capacitor-based design. This work 

supports both training and inference with 

relatively lower programming energy and area.  
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