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Abstract—We report the first experimental demonstration 
of ferroelectric field-effect transistor (FEFET) based spiking 
neurons. A unique feature of the ferroelectric (FE) neuron 
demonstrated herein is the availability of both excitatory and 
inhibitory input connections in the compact 1T-1FEFET 
structure, which is also reported for the first time for any neuron 
implementations. Such dual neuron functionality is a key 
requirement for bio-mimetic neural networks and represents a 
breakthrough for implementation of the third generation 
spiking neural networks (SNNs)—also reported herein for 
unsupervised learning and clustering on real world data for the 
first time. The key to our demonstration is the careful design of 
two important device level features: (1) abrupt hysteretic 
transitions of the FEFET with no stable states therein, and (2) 
the dynamic tunability of the FEFET hysteresis by bias 
conditions which allows for the inhibition functionality. 
Experimentally calibrated, multi-domain Preisach based 
FEFET models were used to accurately simulate the FE neurons 
and project their performance at scaled nodes. We also 
implement an SNN for unsupervised clustering and benchmark 
the network performance across analog CMOS and emerging 
technologies and observe (1) unification of excitatory and 
inhibitory neural connections, (2) STDP based learning, (3) 
lowest reported power (3.6nW) during classification, and (4) a 
classification accuracy of 93%. 

I. INTRODUCTION 

In spite of staggering successes of deep neural networks 
(DNNs), the second generation of neural networks (NNs), we 
have come to the realization that true advances in cognitive 
systems will require autonomous agents to learn from the 
environment without the need for labelled data. Unsupervised 
learning provides such a paradigm. In particular, unsupervised 
learning and clustering in spiking neural networks (SNNs)–
which represent the third generation of NNs–emulate neural 
properties via their coupled dynamics. Recent advances in 
neurosciences as well as estimation theory have revealed the 
advantages of data-encoding through spike-timing: 
compactness, sparsity, and the ability to learn via local updates 
only (STDP), all of which have led to efficient hardware 
implementations of at-scale SNNs [1,2]. 

In parallel, emerging nanodevices such as resistive RAMs, 
memristors, spin and metal-insulator transition devices offer 

significant benefits in terms of power, performance and area as 
physical hardware platforms for implementing NNs—thanks to 
their unique properties that are not intrinsic to the CMOS 
technology. A template leaky-integrate-and-fire (LIF) neuron 
implemented with any of these technologies provides 
promising opportunities, but they all suffer from a fundamental 
shortcoming. All these neurons are excitatory, which means 
that inputs coming to these neurons result in a spike generation. 
However, it is well known in neurobiology and also in 
biomimetic neuromorphic architectures that excitatory neurons 
need to be paired with inhibitory connections to enable 
homeostasis, high accuracy in unsupervised learning and 
increased sparsity in spiking–all of which are essential to 
implement functionally correct and efficient compute models.  

In this paper, we introduce  ferroelectric field-effect 
transistor (FEFET) as the underlying device technology for 
implementing SNNs, and demonstrate, for the first time, 
ferroelectric spiking neurons—the functional unit of SNNs—
with built-in excitatory (exc.) and inhibitory (inh.) input 
connections, which (1) inherently demonstrate bio-mimetic 
dynamics, and (2) leads to compact and efficient 
implementation of neurons and hence the synaptic weights. 

II. EXPERIMENTAL DEMONSTRATION OF 

FERROELECTRIC NEURON  

The core structure of the FE neuron consists of a 
ferroelectric FET (FEFET) and a MOSFET (the discharge FET) 
(fig. 1(a)). An important feature of our demonstration is that, 
FEFET being a three terminal neuromorphic device with an 
intrinsic transistor gain, allows for handling both excitatory and 
inhibitory input connections in this simple, area efficient two 
transistor neuron structure. The excitatory and the inhibitory 
inputs (Vx and Vi, respectively) are connected to the gate 
terminals of the discharge FET (VGM) and FEFET (VGF), 
respectively, through respective leaky integrators (fig. 2(a)). 
The output of neuron VN is at the voltage across the capacitor C 
which is digitized by an inverter at VO. The FEFET was consists 
of a LG=80 nm n-FinFET with 14 fins with its gate terminal 
connected to an epitaxial 100 nm thick Pb(Zr0.2Ti0.8)O3 (PZT) 
ferroelectric. The key to our demonstration of spike generation 
and inhibition in FE neuron is twofold: (1) the existence of 
abrupt transitions in the hysteresis edges of the current-voltage 
characteristics of our FEFET much below the thermal limit with 
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no stable states therein, and (2) the dynamic tunability of the 
location and the width of the FEFET hysteresis by bias 
conditions which allows for inhibition—both of which are 
achieved by careful design of the experiments (Fig. 2(a)).  

To explain the operating principle, we refer to the load-line 
analysis shown in fig. 3(b). Fig. 3(b) plots the measured d.c. 
drain current of the FEFET IDF as a function of its source 
voltage (VN) while keeping the gate and drain voltages (VGF and 
VD) fixed. Also plotted in fig. 3(b) are the output characteristics 
of the discharge FET (IDM-VN curves at different VGM).  
Resting state: When at rest (no exc. Vx and inh. Vi input spikes, 
VGM and VGF are constant), the operating point of the system is 
the intersection of the IDF-VN (FEFET) and IDM-VN (discharge 
FET) curves which is point F in fig. 3(b).   
Neuron firing: Upon the arrival of an exc. spike train at Vx, VGM 
reaches the threshold (VGM=1.15 V for VGF=1 V as in fig. 3(b)) 
for firing when the corresponding IDM-VN curve intersects the 
abrupt transition regions of the IDF-VN curve of the FEFET. 
Note that there are no stable states in these transition regions, 
and hence, the system oscillates through the loop ABCD in fig. 
3(b) [3]. Fig. 4(a) shows the measured waveform of the neuron 
output voltage VN in response to an exc. input spike train Vx. of 
period T= 28 ms and no inh. input spikes (thereby, VGF=1 V). 
Output spikes have a period of 27.9 ms. During this input spike 
train, VGM varies between 1.225 V and 1.425 V (corresponding 
load-lines drawn in fig. 3(b)). In the zoomed-in version of the 
output spikes in fig. 4(a), note that the capacitor C is discharged 
during the transition AB through the discharge FET, and 
during CD, the FEFET charges the capacitor C. Fig. 4(b) 
shows the evolution of the VN waveform as the exc. input spike 
period T is changed from 26 ms to 300 ms. The decrease of the 
period decreases the output firing rate and at T=300 ms, no 
firing is observed.  
Neuron Inhibition: Fig. 5(a) shows the measured neuron output 
voltage waveform VN and the digital output voltage VO in 
response to an exc. input Vx spike train of period T=32 ms 
starting at t=0 and an inh. input Vi spike train of duration 0.18 s 
starting at t=1.025 s. When both exc. and inh. inputs spikes are 
present, the output spikes are inhibited and the average voltage 
level of VN moves to a higher value. The digitized outputs are 
also shown in fig. 4(a). The key to neuron inhibition is the fact 
that the hysteresis in the IDF-VN curve (FEFET) becomes 
narrower and shifts to the right when VGF increases (fig. 3(b)). 
This effect arises due to that the location and the width of the 
hysteresis in ID-VGS curve of the FEFET depends on the value 
of VD (fig. 2(a)). Moreover, the hysteretic transition is actually 
not abrupt enough when VGF=1.6V to travel around the 
hysteresis.  The inh. input Vi spikes raise VGF from 1 V to 1.6 
V; the corresponding the IDF-VN curve with VGF=1.6 V is shown 
in fig. 3(b). The IDM-VN curves corresponding to VGM swing 
(1.225 V to 1.425 V) intersects to the IDF-VN curve at VGF=1.6 
V at point S and P where hysteretic transition is not steep 
enough. As such, in this case, the neuron does not fire, and VN 
moves back and forth between S and P. Fig. 5(b) shows that a 
relatively large, single exc. input Vx pulse can generate a series 
of chirped output spike train which is inhibited when an inh. 
input Vi pulse arrives (fig. 5(c)).  

III. SPICE SIMULATION & PERFORMANCE

PROJECTION 

A SPICE model for the FEFET was developed using multi-
domain Preisach model [4] (fig. 6(a)) and calibrated with 
experimental results by considering the device geometry, 
measured FE hysteresis loop, and parasitic capacitances (fig. 
6(b)). An accurate and quantitative agreement between the 
simulated and experimentally measured FE neuron waveforms 
and the rate coding is observed in fig. 6(d) and 6(e), 
respectively. The performance of a scaled FE neuron was 
projected at the 45 nm node using the PTM 45nm model (PSD 
shown in fig. 6(f)). The scaled 45 nm node FE neuron 
dissipates 0.36 nJ/cycle which is an improvement of 390x 
compared to the experimental one (0.13 µJ per cycle). The 
SPICE FE Neuron model was also used to simulate a specific 
topology of neuromorphic networks (Fig. 6(g) and 6(f)) which 
is used to implement and benchmark the spiking neural 
network (SNN) described in section IV.    

IV. SNN IMPLEMENTATION AND BENCHMARKING

The experimentally calibrated SPICE models have been 
used to evaluate network performance for unsupervised 
learning. We emulate the dynamics of a fully connected 
network (Fig. 7a) with 784 input neurons, 400 excitatory and 
400 inhibitory neurons. We apply images from the MNIST 
data-set and use STDP to learn synaptic weights over. Fig. 7(b) 
illustrates how the network performs unsupervised clustering 
over the data-set over training examples and clusters become 
stronger as training progresses. This is also reflected in Fig. 7(c) 
and (d) where the square of the change of weights decreases and 
the classification and clustering accuracy increases. We 
benchmark the network performance across analog CMOS and 
emerging technologies and observe (1) unification of excitatory 
and inhibitory neural connections, (2) STDP based learning, (3) 
lowest reported power (3.6nW) during classification, and (4) a 
classification accuracy of 93%. 
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Fig. 1: Neuron implementation using Ferroelectric FETs and associated spiking neural network. (a) The circuit topology of a ferroelectric
spiking neuron with excitatory and inhibitory inputs. (b) A biological neuron. (c) A schematic representation of spiking neural network (SNN)
with an excitatory and an inhibitory neuron layer. (d) The concept of unsupervised clustering on unlabeled, raw data using an SNN .

Fig. 3: Operating principle and Load line analysis of the experimental ferroelectric neuron (a)
Operating principle of the ferroelectric neuron and circuit diagram of the leaky integrator. (b)
Load-line analysis. Measured d.c. ID-VN characteristics of FEFET at VGF=1 V and 1.6 V and
VD=VDD=3.3 V and output characteristic (IM-VS) of the discharge FET. At VGF=1.6 V, the hysteresis
in ID-VS characteristics shifts to the right compared to that at VGF=1 V. The neuron generates spikes
when the discharge FET load lines intersect the FEFET ID-VS curves in the unstable transition
regions (i.e., BC and DA @VGF=1 V). For VGF=1.6V, the hysteretic transition is not abrupt enough
to travel around the hysteresis (i.e., move back and forth between S and P).

Fig. 4: Experimental demonstration of a ferroelectric neuron. (a) Measured waveforms of the excitatory input Vx and the neuron output voltage
VN in response to excitatory input Vx spike train with period T=28 ms and no inhibitory input spikes at Vi. The output spikes have a reverse polarity
compared to the usual polarity of biological neurons. The output spike period is 27.9 ms. Also shown in a zoomed in version of two spikes. During
a spike, the state of the FEFET approximately traverses the path ABCD as shown in the load line analysis shown in fig. 3(b). (b) The neuron output
voltage VN in response to excitatory input spike trains with periods T=26, 32, 35, and 300 ms and no inhibitory input spikes. The output spike
period is 24.8, 63.8, 114.1 ms for T=26, 32, 35 ms, respectively. The neuron do not output any spikes for T>100 ms.

(a) (b)

(a) (b)

Fig. 2: Device characterization. Measured
d.c. ID-VGS characteristics of the FEFET.
Polarization-voltage and switching current-
voltage characteristics of epitaxial PZT
ferroelectric in the FEFET structure at 150
Hz (inset). The transitions for VDS=2.6V and
2.8V are abrupt. However, for VDS=2.4V,
only the downward transition is abrupt.

(a) (b) (c) (d)
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Fig. 5: Demonstration of Inhibition in Ferroelectric Neuron. (a) Measured waveforms of the excitatory input Vx, inhibitory input Vi, and the
neuron output voltage VN in response to excitatory input spike train with period T=32 ms and inhibitory input spike train of 0.18 s duration starting
at t=1.025 s. When both inhibitory and excitatory input is present, the neuron do not fire and do not generate any spikes. The crests and troughs of
the inhibited neuron output correspond to point S and P in the load-line analysis shown in Fig. 2(b). (b,c) A large spike in the excitatory input Vx
generates a chirped output spike train (fig. c) which is be inhibited when an inhibitory pulse at Vi is arrives during this spiking mode (fig. c).

(a) (b)

(c)

Fig. 6: SPICE Simulation of Ferroelectric Neuron. (a) SPICE model of the FE neuron. (b, c, d) Simulated the ID-VG (b) and ID-VS (c)
characteristics for the FEFET and the neuron waveforms (c) under similar experimental conditions presented in Fig. 5(a) showing reasonable
agreement between experiment and simulation. (e) Input Frequency versus firing frequency of the neuron. (f) Simulated power spectrum density of
a FE neuron projected at 45 nm node. (g,h) The neuromorphic topology of interconnected neurons (g) used in SNN simulation in Fig. 7 and its
SPICE simulated behavior (h) when either of the excitatory (red) and inhibitory (green) connections are active or both of them are neutral (black).

Fig. 7:Ferroelectric Spiking Neural Network. (a) Ferroelectric spiking neural network architecture. (b) Illustration of MINST over training
epochs of 1k, 10k, 50k, and 150k. (c,d) Average (Δw)2 (c) and %accuracy (d) versus number of examples. (e) Benchmark table.
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Technology CMOS Analog, Mixed Signal Emerging Technology

Neuron Type LIF Multiply-
Accumulate LIF LIF

Network Type Spiking Non-spiking Spiking Spiking

Data Encoding 
Architecture Spike Timing Multi-level 

perceptron Spiking Rate Spike Timing

Input Type Excitatory Excitatory Excitatory Excitatory & 
Inhibitory

Device Count 15 T 64 T 1T - 1 VO2 1T - 1 FEFET

Synapse 
Requirements

Positive and 
Negative 
Weights

Positive and 
Negative 
Weights

Positive and 
Negative 
Weights

Positive 
Weights

Training &
Classification Unsupervised Reinforcement Supervised Unsupervised

Power 10 nW 125 nW Not reported 3.6 nW
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