

Power Delivery and Management in Flexible Substrates for IoT Applications

S. Sivapurapu, X. Jia, M. L. F Bellaredj and Madhavan Swaminathan John Pippin Chair in Microsystems Packaging & Electromagnetics School of Electrical and Computer Engineering Director, Center for Co-Design of Chip, Package, System (C3PS)

Georgia Institute for Electronics Tech ∦and Nanotechnology

- Power Delivery for IoT
- □ Architecture
- □ Modeling
- □ Fabrication & Characterization
- PDK & Machine Learning
- □ Summary

Overview

Courtesy: PDES Consortium, GT

RF Energy Source

□ Known Energy Source smart swarm microwatch robots unmanned mobile ground sensors phone (UGSs) Capacitance unmanned pads or aerial vehicles e-readers Resonant primary (UAVs) Resonant secondary unmanned ground personal vehicles (UGVs) computers Near Field Courtesy: PDES Consortium, GT Far Field □ Ambient Energy Source WiFi hot spot $E_i(\omega_n)$ $E_i(\omega_1)$ UMTS (θ_n, ϕ_n) $E_i(\omega_k)$ GSM 900 RECTENNA $E_i(\omega_2)$ GSM 1800 Courtesy: Costanzo et al, IEEE Proc., 2014

✓ Power Inductor

inductor

Rigid Substrates

Author	Receive Element Type	Frequency	Receive Element Area	PMU	Load Power	Efficiency
This work	WPT Coil	1.025 GHz	100 mm ²	Yes	14 mW	51.1%
Nariman, 2017	Rectenna	60 GHz	.01 mm ²	No	1.22 mW	32.8%
Kuo, 2016	WPT Coil	4.7 GHz	.01 mm ²	No	0.1 mW	1%
Cabrera, 2016	WPT Coil	986 MHz	2.25 mm ²	Yes	73 µW	7.3%
Kim, 2015	Antenna	900 MHz	8100 mm ²	Yes	200 μW	20%

Courtesy: PDES Consortium, GT

□ New buck converter based architecture for mixed signal load (2mm distance)

- □ Boost converter (Design: 60X conversion ratio with low bias current GF: 130nm)
- **D** Power Delivery Efficiency: 41% 51% ($450\Omega 1500\Omega$ variable load)
- □ Reverse Power Delivery Network (PDN) to maximize efficiency
- □ Integrated inductor (NiZn ferrite composite core) to increase inductance density
- ~1GHz & mW power transfer

Integrate components that are:

- ✤ Cost effective
- Safe for human contact and usage
- ✤ Flexible

- Thinned Silicon (Buck/Boost Converter)
- Embedded Super Capacitor

- Embedded Inductors
- Battery

Multi-physics Modeling

Bending

Twisting

Stretching

Modeling operating conditions important

- Possible scenarios:
 - Mechanical loading changes electrical response due to geometry
 - Mechanical loading changes electrical properties
- How do you model the electrical response in such scenarios?
- Are the commercially available tools adequate?
- How complex are such simulations?

Inductors - Bending

Substrate: Kapton Polyimide Conductor: PE 410 (Ag) & Cu (Etch)

Resistivity: 5 mΩ/□/25µm (PE410)
 1 mΩ/□/25µm (Cu)

Bending radius: 2 cm, 2.5 cm, 4 cm, 6 cm, 8 cm and flat

Dimension	Size (mm)	
d	6.85	
S	.15	
t _{Ground Plane}	.018	
t _{Substrate}	.125	
t _{Trace}	.018	
w	.15	

- **We will focus on the Electrical Response**
 - Inductance, Q & SRF Vs Bend radius

Powering the Internet of Everything Workshop

Inductors – Bending

Center for Co-design of Chip, Package, System

Inductors – Bending (cont.)

- 10% 50% change in inductance due to bending (large)
 Q(PE410): 5 7; Q(Cu): 20 25
- □ 4X higher Q with Cu due to lower resistivity
- PE410 too lossy
- Monotonic reduction in L & Q with increasing radius (except 20mm radius)

NEXTFLEX

Inductors - Stretching

Substrate: Kapton Polyimide

Center for Co-design of

- □ Conductor: Screen Printed (SP) Ag-Flake
 - Resistivity: 15 mΩ/□/25µm
 - Trace Thickness: 12 µm to match empirical data

0%, 5% & 10% Stretch

Inductors – Stretching (cont.) NEXTELEX

Approximate Thicknesses

- Substrate: 128 µm (~5 mil)
- Ink: 12 μm
- Encapsulant: 26 µm

Courtesy: Prof. S. Sitaraman, GT

Test Parameters

- Monotonic Tension until Break
- 4-Wire In-Situ Resistance Measurements
- Load Rate: 10 mm/min
- Initial Grip Separation: 100 mm
- Sample Width: 25 mm

Georgia Institute of Technology

Nov 7, 2017

Resistivity Vs Stretching

Kapton #1 Normalized Effective Resistivity vs Strain

□ Effective resistivity changing with stretching

Powering the Internet of Everything Workshop

Electrical Results - Stretching NEXTELEX

- □ Resistivity of Ag-Flake high
- \Box Very resistive 23 Ω for 0% Stretch
- Resistance increases by 4X for 10% Stretch
- □ 30% reduction in inductance for 10% stretch
- Q decreases from 2 to 0.5 (4X) for 5% stretch
- □ Too lossy!

Georgia Institute of Technology

Fabrication & Characterization NEXTELEX

Electrical Characterization under Mechanical Loading

CPW Transmission Line

M⁴ 3D Printing of a stretchable conductive stripe Prof. J. Qi, GT

Vertical Launch Connectors

- Test Structures: Transmission line and Inductor Structures
- Substrates: Polyimide, PET, TPU
- Ink: Silver based inks
 - Screen Printed (SP) Ag-Flake
 - Aerosol Jet Printed (AJP) Nano-Ag
- Cu Etch
- Fabrication: GT & Dupont
- Test structures specially designed for electrical characterization with mechanical loading (Stretching & Bending)
- Correlate with models

- Bayesian Optimization using MLEliminates hand tuning
- Can support tuning of 10 25 parameters simultaneously
- Can be used to reduce area and maximize efficiency
- Enables robust designs that work in the operating environment

19

Georgia Institute of Technology

Nov 7, 2017

Machine Learning - Rigid

RF to unregulated DC Efficiency Comparison

Rectifier R

Tuning Parameters

Courtesy: PDES Consortium

		Hand Tuned	Machine Learning
	RF Coil Area	$56.25 \ mm^2$	20.1 <i>mm</i> ²
	Inductor Area	$56.25 \ mm^2$	$40.48 \ mm^2$
	System Efficiency	50.89%	58.14 %

75

- Delivery using FHE requires:
 - Embedded Coils
 - Flexible Batteries
 - Embedded Inductors
 - Embedded Capacitors
 - Thinned Chips
- Designs require models that capture electrical mechanical interactions
 - Bending, Stretching, Twisting ...
 - Predictive models
- Such interactions are difficult to capture in the available tools and often times the results are difficult to believe
- □ Calibrated models using measurements therefore required
- Parameterized models in Process Design Kits (PDK) can be very powerful since they support predictive capability
- Machine Learning can be a useful technique to populate PDKs and to enable reliable designs (works under operating conditions)

Powering the Internet of Everything Workshop

Discussions?

www.c3ps.gatech.edu

madhavan@ece.gatech.edu

Georgia Institute of Technology

Nov 7, 2017