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Thermioelectric
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Overview

= PFFM architecture
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= High=-dutyv=-cycle ascillaton
= Lowsvollage (subthreshobd) design
= Laow-load elficiency management

Low-power/Low-Voltage
Voltage Regulators

Inductivie Buck

Inductive Boost

Inductive Buck-boost with
autonomaous mode switching

Feaiures

Ultra=low-power with hins gating

= Fust on-ofl response

NEXTFLEX

Single Inductor Cascaded
Stages Regulators for wide
conversion ratio

Iinbegrabed Baftery

Efficient RF-DC conversion &
Rectifierless Boosting

A: Energy Sources

B: Integrated Voltage
Conversion/Regulation

Courtesy: PDES Consortium, GT
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On-line control of load and ‘I ;

power conditioning moduld

Energy from multiple sources including recharging of on-

chip hattery

* Maximum powerfenergy transfer from source to load
Encrgy delivery to RF/digital/analog loads — multiple
power domains with widely varving power demands

* Dn=line control for system level maximum energy efficiency

Lead: A mixed-signal system for laT

Cammunication nits
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fft_.

RF transmily receise

C. Power Delivery and Conditioning System
with On-line Management
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3PS RF Energy Source NEXTFLEX

Center for Co-design of
Chip, Package, System

O Known Energy Source

swarm micro-

- robots
| ! ; unmanned
: ! mobile
: phone ™ ground sensors
| | (UGSs)
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. | Resorant | : (UAVs)
. | secandary H
: personal unmanned ground
: | computers vehicles (UGVs)

-~ Courtesy: PDES Consortium, GT Far Field
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Courtesy: Costanzo et al, IEEE Proc., 2014
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RF

Circuits
Embedded L

1 00 Diode based RF-DC Power Inductor $ 33V

Conversion 33 mW peak
y GHz 10 MHz
3.3V g

DC Analog
1 DC L | Circuits

; 130 nm ; 1.2V
rocess 2 mW peak

- Parallel Cap P
Wireless Power Branches Buck

Transfer - Near Field Converter Digital
Inductive Resonance J_ Circuits

$ 0312V

10 mW peak

Embedded
| Ca;acitors
/{TOmm Distance \

o e » Efficiency ~ 1%
DG >>> * Distance: 70mm
T DC v" RF Cails
| @ 70mm v" Matching Network
8% 25%  95% 50% j PDN Network
Wireless Power [ aroc || Rectiier || Converter with pe— Charge Storage
\:"""Sf;anl"ﬁ?;"“ | Cm_‘ Tanstion p"”:|p“w" Davico Loa v" Boost Converter
e - v" Power Inductor /

Georgia Institute of Technology Nov 7, 2017



Powering the Internet of Everything Workshop

Rigid Substrates NEXTFLEX

i Center for Co-desian of
Chip, Package, System

- o ITETT IR Author Receive Frequency Receive PMU Load Efficiency
‘ el AT Element Element Power
Reverse PDN Type Area
This work WPT Coil 1.025 GHz 100 mm2 Yes 14 mW 51.1%
Nariman, Rectenna 60 GHz .01 mm2 No 1.22 mW 32.8%
2017
Kuo, 2016 WPT Coil 4.7 GHz .01 mm2 No 0.1 mW 1%
Cabrera, WPT Coil 986 MHz 2.25 mmz? Yes 73 pW 7.3%
2016
Kim, 2015 Antenna 900 MHz 8100 mm2 Yes 200 pW 20%

Courtesy: PDES Consortium, GT

O New buck converter based architecture for mixed signal load (2mm distance)

0 Boost converter (Design: 60X conversion ratio with low bias current GF: 130nm)
O Power Delivery Efficiency: 41% — 51% (45002 — 150002 variable load)

0 Reverse Power Delivery Network (PDN) to maximize efficiency

O Integrated inductor (NiZn ferrite composite core) to increase inductance density
U ~1GHz & mW power transfer

Georgia Institute of Technology Nov 7, 2017
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Integrate components that are:

s Cost effective
*» Safe for human contact and usage

s Flexible
Data /
ower
Inductors P Sengor
Data / /logic
power
- ] RF/

' ' Antenna

Thermoelectric ™ |
\ |l mmEBE ENy
\ lI.IIII.}.ll
o 1 N

RF energy / -
! L ] ‘
harvesting \/W

capacitor

> Transmission lines

» RF Colls
» Thinned Silicon (Buck/Boost Converter) » Embedded Inductors

» Embedded Super Capacitor

> Battery
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3PS Multi-physics Modeling NEXTFLEX

!h Center for Co-design of
Chip, Package, System

Stretching Bending Twisting

0 Modeling operating conditions important
O Possible scenarios:

» Mechanical loading changes electrical

Electrical Mechanical
Simulation <:> Simulation response due to geometry
» Mechanical loading changes electrical
properties

0 How do you model the electrical response
Thermal in such scenarios?
Simulation O Are the commercially available tools
adequate?
O How complex are such simulations?

Georgia Institute of Technology Nov 7, 2017
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ﬁﬁ“s Inductors - Bending NEXTFLEX
d Substrate: Kapton Polyimide Bending radius:
0 Conductor: PE 410 (Ag) & Cu (Etch) 2cm,2.5¢cm,4cm, 6cm, 8
» Resistivity: 5 mQ/0/25um (PE410) cm and flat
1 mQ/0O/25um (Cu)
Dimension Size (mm)
d 6.85
S 15 .
tGround Plane '018
tSubstrate 125 R
tTrace 018
W 15

? tGrouncl Plane

O We will focus on the Electrical Response
» Inductance, Q & SRF Vs Bend radius

Georgia Institute of Technology Nov 7, 2017
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Inductors — Bending NEXTFLEX

il center for Co-desian of
Chip, Package, System
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% 3PS Inductors — Bending (cont.) NEXTFLEX

Center for Co-desian of
Chip, Package, System

PE 410 Bending - Q: Spacing and Width = 15mm

.
+  Bending Radius = 20 mm
Qmax (PE410 & Cu Etch) * Bendng Radius = 26 mm
K P e Bending Radius = 40 mm
. * ...ﬂ::ulo.... Bending Radius = 60 mm
- .=gll:__.n“"l0-...:' -, Bending Radius = 80 mm
il e’ " Bending Radius = 1000000 mm
. o . = i
S5 - "
o
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4 :
BEND RADIUS (CM)
1 Il 1
05 1 15 2 25 3 35
Frequency (Hz) x10%

d 10% - 50% change in inductance due to bending (large)

d Q(PE410): 5-7; Q(Cu): 20 - 25

O 4X higher Q with Cu due to lower resistivity

O PE410 too lossy

O Monotonic reduction in L & Q with increasing radius
(except 20mm radius)

Georgia Institute of Technology
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@@S Inductors - Stretching NEXTFLEX

SV center for Co-design of
Chip, Package, System

O Substrate: Kapton Polyimide
O Conductor: Screen Printed (SP) Ag-Flake
» Resistivity: 15 mQ/0O/25um
e Trace Thickness: 12 um to match empirical data

E-Field H-Field

O 0%, 5% & 10% Stretch

Georgia Institute of Technology Nov 7, 2017
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Approximate Thicknesses Test Parameters

= Substrate: 128 pym (~5 mil) = Monotonic Tension until Break
= Ink: 12 ym = 4-Wire In-Situ Resistance Measurements
= Encapsulant: 26 um * Load Rate: 10 mm/min
= |nitial Grip Separation: 100 mm
Courtesy: Prof. S. Sitaraman, GT =  Sample Width: 25 mm

Georgia Institute of Technology Nov 7, 2017
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Hf%S Resistivity Vs Stretching NEXTFLEX
Kapton #1 Normalized Effective Resistivity vs Strain
—10 mm 5mm 2 mm I1mm —0.5mm -0.25 mm
20
18
16
14
12
210
Q
8
&
4
2
0
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

L/LO

O Effective resistivity changing with stretching
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3PS Electrical Results - Stretching nex7riox

| Center for Co-design of
Chip, Package, System
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0.5 -

STRETCH (%)

#  No Siretch
# 5% Stretch

10% Stretch

O Resistivity of Ag-Flake high

O Very resistive — 23Q2 for 0% Stretch

O Resistance increases by 4X for 10% Stretch
O 30% reduction in inductance for 10% stretch
0 Q decreases from 2 to 0.5 (4X) for 5% stretch
O Too lossy!

Frequency (Hz)

Georgia Institute of Technology
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IF Transmission Lines - Bending ~ex7Tr %

} Center for Co-desian of
Chip, Package, System
Wrrace }
E Field [¥/m] E Field [¥/m]

4
1.4772E+@5 1.7162E+@5 t
. 1,3767E+B5 . 1, BALBE+AS Substrate
1.2B02E+25 1. 4874E+AS
1,1817E+85 1., 3730E+85

1.@8533E+05 1.2Z586E+@5 T t

5. B47GEEY 1. 1441E+B5 C Ground Plane

S Convex e oncave

6. GI35E+@Y - - -

e | Dimension | Size (mm)

3. 9391E+aY I 20
tGround Plane .018

tSubstrate 100
tTrace .012

§.0290E+3Y4
6. GE4IE+DY

ISubstrate

5.7287E+@4

4. S76GE+AY | S

wwwwwwwwww
sssssssss

2
. 1. 1441E+@Y

1.6768E-a2

2, 9544E+AY
1. 9GIGE+AY
. 9. B4BAE+AT
1.6722E-a1

. 2.4
= Substrate: Kapton Polyimide Wsubstrate —

= Conductor and Ground Plane: PE 410 Wirace : W oie

T e T == Q Matching is
pprm———— g ~:-z—%"""f::t.,,=: —=——1 worse for concave
o Concave s | T e, Convex
%: - e EI Counterintuitive!
l Convex - | . Concave™ “. 1@ Need correlation
af - with measurements

Frequency (Hz) 10° o
Freguency (Hz)
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3PS Fabrication & Characterization n:x7riTx

A center for Co-design of
Chip, Package, System

_ o M4 3D Printing of a stretchable conductive stripe
Electrical Characterization under Prof. J. Qi, GT

Mechanical Loading

CPW '_I_'__r_z_,a_nsmié"é'iaﬁ_ Line

Vertical Launch
Connectors

O Test Structures: Transmission line and Inductor Structures
O Substrates: Polyimide, PET, TPU
Q Ink: Silver based inks
= Screen Printed (SP) Ag-Flake
» Aerosol Jet Printed (AJP) Nano-Ag
Cu Etch
Fabrication: GT & Dupont

Test structures specially designed for electrical characterization with mechanical
loading (Stretching & Bending)

Correlate with models

O OO0

Georgia Institute of Technology Nov 7, 2017
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sPS Process Design Kits NEXTFELEX

L ! Center for Co-design of
} Chip, Package, System

_ Bending . Sin. Bending __ Stretching
N

Electrical Mechanical e N N
Simulation <:> Simulation LY O\ 2

) _.' e at
—_— Ao e
e . ; L
PDK
FAN A
/! b -~ rd t,‘
NS T £
LA 7

Correlation ¥ {
With N
Measurements — 3
i 0 PDK'’s contain parameterized models that:

= Capture electrical — mechanical interactions, are
well characterized & enable predictions

L= 1 Required for:

=  Automation

= Miniaturization

= High Volume Production

Georgia Institute of Technology Nov 7, 2017
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€ 3PS Machine Learning NEXTFLEX

SV center for Co-design of
Chip, Package, System . . .
Two-layer spiral inductor with

screen printed magnetic material
Embedded Mismatched WPT Coils

Stage 2: Stage 3: |_ — —
Wireless Power Transfer ’ - Power Inductor
RX Resonance and Rectifier I ower ‘nductor |

1004
RFyN Cr, _I 100k
~ A
Y
Stage 1: Stage 4:
TX Resonance DC regulation stage with embedded inductor
Bayesian Optimization using ML Courtesy: PDES & CAEML

= Eliminates hand tuning

= Can support tuning of 10 — 25 parameters simultaneously

= Can be used to reduce area and maximize efficiency

= Enables robust designs that work in the operating environment

Georgia Institute of Technology Nov 7, 2017
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3PS Machine Learning - Rigid NEXTELEX

|| Center for Co-design of
Chip, Package, System

- RF to unregulated DC Efficiency Comparison
Tuning Parameters 75 T
Stage 2: Stage 4:
(12 Parameters) Embedded Spiral Inductor
; § Parameters
TX & RX Horizontal Side Length Stage 1 & 3: ( )
TX & RX Vertical Side Length Rectifier Circuit Line Width
(4 Parameters) ,

TX & RX Line Width : Side Length

Matching Network ) .
TX & RX Horizontal GND Cut-Out Magnetic Material Thickness

Resonance Capacitors
TX & RX Vertical GND Cut-Out Number of Turmns

N . 45 === QOptimized Miniaturize Coil
TX & RX Feeding Gap Spacing Between Turns Hand Tuned
0 i | i | = QOptimized Balanced Coil
200 300 400 500 600 700 800 900 1000
. Rectifier R
Courtesy: PDES Consortium HoAD
Machine
Hand Tuned :
Learning

RF Cail

56.25 mm? 20.1 mm?
Area

Inductor

56.25 mm? 40.48 mm?
Area

System

0 0
Efficiency 50.89% 58.14 %

Georgia Institute of Technology Nov 7, 2017
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Summary NEXTFLEX

N,
)

T %
ter Fi

]
q ! | Center for Co-design of
I Chip, Pac kage, System

O Power Delivery using FHE requires:
= Embedded Coills
» Flexible Batteries
= Embedded Inductors
= Embedded Capacitors
= Thinned Chips
[ Designs require models that capture electrical — mechanical interactions
= Bending, Stretching, Twisting ...
= Predictive models
U Such interactions are difficult to capture in the available tools and often times
the results are difficult to believe
1 Calibrated models using measurements therefore required
U Parameterized models in Process Design Kits (PDK) can be very powerful
since they support predictive capability
L Machine Learning can be a useful technique to populate PDKs and to enable
reliable designs (works under operating conditions)

Georgia Institute of Technology Nov 7, 2017
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R gﬁ :
] S Thank you NEXTFLEX

if i | Center for Co-design of
} Chip, Package, System

Questions? Discussions?

madhavan@ece.gatech.edu

Georgia Institute of Technology Nov 7, 2017


http://www.c3ps.gatech.edu/
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