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Background
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• A center titled Center for Advanced Electronics through Machine 
Learning (CAEML) has been proposed

• This is an NSF Industry/University Cooperative Research Center 
consisting of UIUC (Lead), NCSU and GT

• Center focus is on Behavioral Modeling and Optimization of Devices, 
Circuits, Packaging and Systems through Machine Learning with 
applications in Digital, RF, Microwave and Mixed-Signal Domains

• The principal investigators (PIs) requested a planning grant from the 
National Science Foundation (NSF)

• The proposal included 22 letters of interest from industry
– Indicating a willingness to send a representative to the center planning 

meeting should the grant be awarded
• Following proposal submission and review, NSF awarded a grant to 

CAEML
• Center Planning Meeting is scheduled for November 2-3, 2015 in 

Urbana, IL



Outline

• Better models for better designs
• Machine Learning
• Applications for Behavioral Models in Electronic 

System Design
• NSF I/UCRC program

– List of participating faculty
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Electronic Design Automation (EDA)
• EDA tools allowed the IC industry to successfully 

manage 50 years of exponential increase in design 
complexity[1]

• Simulation is the key tool that has enabled the 
development of low-cost, safe, energy-efficient 
electronic systems
– Ranging from smart phones to airplanes

• Simulation used for both design optimization and 
verification

• Used for almost every aspect of the design process
– And, where it is not used, this is because of a lack of 

adequate models
– Example: system-level ESD
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[1] “NSF Workshop: Electronic Design Automation-Past, Present, and Future”, July 8-
9, 2009, http://cadlab.cs.ucla.edu/nsf09/



Limits of Modern EDA
• Today, simulation cannot ensure that an IC will pass 

qualification testing, but it has reduced the typical 
number of design “respins” down to just 1 or 2 [2]

• Many of the observed failures during qualification 
testing are the direct result of an insufficient 
modeling capability
– Sources of such failures include mistuned analog circuits, 

signal timing errors, reliability problems, and crosstalk [2]

• The set of models to support chip-package co-
design or circuit-board design are less complete 
than those for chip design

• A new (better) approach to generating models will 
advance the capabilities of EDA 
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[2] Harry Foster, “2012 Wilson Research Group Functional Verification Study” , 
http://www.mentor.com/products/fv/multimedia/the-2012-wilson-research-
group-functional-verification-studyview



A Hierarchy of Models
• As one moves through the design hierarchy from low 

level to high level (e.g., from a single device to a 
consumer electronic product), one uses a different set of 
models in the simulations

• Only need to represent the response of the object at its 
external ports, i.e., where it interfaces to the next higher-
order system
– The resulting model is called a behavioral model
– Behavioral modeling can alleviate the IP bottleneck

¾ IC suppliers rarely share schematic-level design or 
technology information with customers

– Using behavioral models is computationally and energy efficient
• High-level models should be extracted from low-level 

simulation and/or measurements results
– Methodology to do this is ad hoc and incomplete
– CAEML will address this problem
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Model-based Design

7

• Computationally efficient, parameterized models allow for design 
optimization, in addition to verification. Behavioral models may be 
used for IC design optimization as well as for larger electronic 
systems.

Sensitivity Analysis

Performance Modeling

Model-based Design

Design Validation

Initial Low-yield Design

High-yield Design with
Optimal Sub-circuits

• Analyze and select efficient calibration 
knobs.

• Construct parametric performance models 
with calibration knobs and variations.

• Design and optimize sub-circuits (for yield, 
power, area, reliability …)
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Machine Learning (ML)

• The goal of machine learning is model extraction 
from data despite the presence of uncertainty, 
errors and noise.

• The emphasis is on models that provide a good 
balance between predictive ability and 
complexity.

• ML is used when the functional relationship 
between the input (i.e., stimulus) and output (i.e., 
response) is complex and unknown, and is 
especially useful when the mapping from input 
to output includes stochastic effects.
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Machine Learning (ML), cont’d

• ML describes an algorithm 
that takes a set of input-
output data and 
formulates a prediction of 
the system's output due to 
an arbitrary input.

• As time progresses, the 
algorithm gets faster and 
makes more accurate 
predictions.
– It learns.
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Electronics Modeling Needs

• A new modeling approach is needed to advance the 
capabilities of state-of-the-art EDA → ML proposed

• Behavioral models needed for components that are 
non-linear, time-variant, multi-physics, multi-port
Today:
– If component’s internal dynamics can be modeled and 

simulated, behavioral modeling remains challenging and 
time consuming

– Or, if response can presently only be observed in 
measurement, input-output relation must be extracted by 
trial and error

– Unavailability of models is a roadblock to advancing the 
state-of-the-art in EDA
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Electronics Modeling by Machine 
Learning

• ML well known in fields such as computer vision, 
but more recently has been used to model 
reliability of communication networks and power 
grids
– Many commonalities with ICs and electronic 

products: heterogeneous, large number of 
interacting components, multiple ports

• ML based modeling will provide an 
unprecedented capability to optimize 
electronic systems for performance, power 
and reliability
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Machine Learning Research in CAEML
• Physics-aware modeling

– Reduce risk of obtaining non-physical results outside the 
space covered by the input datasets

– Eliminate large classes of available models
¾Reduce model extraction time

• Incorporation of component variability
– Perhaps using chaos expansions

• Quantify minimal training data requirements
• Handling multi-port components

– Exploit known dependencies between the ports to reduce 
sample complexity and speed up learning

• Adding an adaptive component that can learn (i.e., 
incorporate) prior knowledge from multiple designers
– Use prior knowledge both for learning and testing of 

models
13
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Applications of Behavioral Models
• High-speed link optimization
• Chip-package co-design
• System-level ESD design
• Non-linear PDN simulation
• RF and mm-wave parasitic extraction
• Mixed-signal verification
• And many others …
• Over the next few months, we seek to have 

discussions with our prospective industry 
partners to learn about their biggest needs 
and interests
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7 Example Projects

• Some of these will likely be among the first 
projects funded by the CAEML

• Other projects may result from the upcoming 
industry-university discussions
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Power Distribution
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Goal: Compatible, behavioral models of active and passive elements that 
enable non-linear PDN simulation.
Approach: Use ML to derive models from EM and circuit-level simulation 
results and measurement data.
Motivation: PDNs are increasingly non-linear. Temperature-aware 
compensation techniques such as Dynamic Voltage and Frequency Scaling 
considering temperature effects become important. 
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Goal: Extend IBIS methods to create scalable, behavioral models of complex 
driver and receiver circuits which capture the effects of noise and other non-
linear phenomena. 
Motivation: The drivers and receivers contain complex pre-emphasis, pre-
distortion, equalization and other compensation circuits to enable high-speed 
signal transmission across lossy media. With Near Threshold Voltage (NTV) 
signaling, power supply noise, temperature effects and process variations 
increasingly affect the link performance. 

High Speed Channel Black Box Model
Time savings using Black

Box models

Memory Channel Statistical Analysis

Mutnury, 2005 GT PhD Thesis

Swaminathan, GTModeling & Design Optimization of 
High-Speed Links (1/2)



X-parameters

Includes harmonic-to harmonic 
interactions in addition to port-to-
port interactions to capture 
nonlinear behavior in the 
frequency domain

S-parameters

“ …most successful 
behavioral models…”

…but only works for LTI…

Modeling & Design Optimization of 
High-Speed Links (2/2)

Goal: Demonstrate X-parameters as a framework for behavioral 
modeling of high-speed links. 

Schutt-Aine, UIUC



System-level ESD Design
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[Bertonnaud, 2012 EOS/ESD]

Goal: Derive component ESD models so that 
simulation can be used to design ESD-robust 
systems.
Approach: Use ML to extract behavioral 
models from measurement data and circuit 
simulation results. 
Motivation: System ESD reliability presently 
obtained through trial and error testing of 
system prototypes.

ESD (kV)
Data 
Upset

|VPRE| ≤ 2 0 %
4 93.3 %
-4 4.2 %
6 20.8 %
-6 12.5 %
8 0 %
-8 0 %
4 30 %
-4 0 %
6 8.3 %
-6 0 %
8 0 %
-8 0 %

Simulate the residual ESD that’s not filtered on-board and its effect on ICs

ESD has many return paths to system ground. Upset 
and latch-up get triggered in circuit blocks that 
should be isolated from I/O. [Mertens, UIUC 2014]

ESD soft failure: Logic 
upset in domino gates 
(msmt). Windowing 
effect complicates 
modeling. [Thomson, 
UIUC 2014]

Rosenbaum, UIUC



Chip-Package Co-design

Goal: Cross-domain modeling for chip-package co-design
Approach: Use ML to derive behavioral models for the 
other domain that capture relevant behaviors and are fast 
to evaluate. Parameterized models that include design 
variables.
Motivation: Co-optimization of chip design (floorplan, IO 
assignment, IO coding, etc.) and package design (SI and 
PI management features) is currently very expensive in 
simulation 21

Yan, 2013 ECTC

Franzon, NCSU



Mixed-Signal Design Verification

• Problem:  
– High simulation cost to verify digitally-

assisted analog circuits for all possible 
switch settings
¾Both functional and electrical 

verification affected
¾E.g. Difficulty in Electromigration supply 

wire sizing
• Solution: 

– Represent analog design using a fast-to-
evaluate Behavioral Model obtained via ML

– Enables fast simulation through a 
combination of HDL and AMS languages
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Floyd/Franzon, NCSU

Analog
Design

SM
fit

Digital
Design

Fast 
multi-domain

simulation

AMS 
Model



Layout Assistant for Mixed-Signal 
Designs

• Problem Statement:
– Modern designs have over 2,000 design rules and 

numerous design guidelines, requiring frequent 
iteration between design and rule checking

• Solution:
– Create a “Magic” tool for the 21st Century
¾Magic was a 1980s layout tool that incorporated 

online interactive DRC
– Use machine learning to give feedback and 

suggestions on design during the design process 
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Davis/Floyd, NCSU



Outline

• Better models for better designs
• Machine Learning
• Applications for Behavioral Models in Electronic 

System Design
• NSF I/UCRC program

– List of participating faculty

24



NSF I/UCRC Program
• Industry/University Cooperative Research 

Center
• NSF encourages the formation of multi-

university centers
• Several research projects under the umbrella of 

a common research theme
– Overarching research theme produces core 

knowledge that enables the various projects
– Industry needs drive the project selection
¾Industry advisory board (IAB) votes on projects

• Pre-competitive research
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I/UCRC Program Overview
• Year 1: Planning grant

– No financial contribution from industry
– Prospective, industry members of center attend a workshop

¾PIs describe center theme
¾Faculty propose projects
¾Projects ranked by industry

– PIs write center proposal for NSF
¾ Includes description of projects to be funded initially
¾These projects were ranked highest at the workshop

• I/UCR Center
– 5 years, can be renewed if interest persists
– Very low overhead (10%)
– Twice annual research review and IAB meeting
– New project starts each year, selected by IAB
– Industry access to students for internships and permanent 

employment
– Opportunity for industry engineers to work on campus with 

researchers
26



I/UCRC Benefits to Industry
• More bang for your buck

– NSF pays administrative expenses
– Industry funds used to support research
– Funds are pooled
– 6:1 leveraging of NSF funds*
– 47:1 leveraging of industry funds*

• Members have rights to IP (non-exclusive)
• Graduate students perform industry-relevant 

research
– 30% are hired by the center companies upon graduation*
– Consistently rated by employers as superior on 

professional preparation, communication and teamwork 
than non-I/UCRC students*

27*Boot Camp for I/UCRC Planning Grantees, Mar. 13, 2015, National Science Foundation.



I/UCRC Benefits, cont’d

• Industry and academia jointly set research goals
• Industry Advisory Board selects projects for 

funding
– Ensures research portfolio remains highly relevant

• Some centers have been in existence for > 25 
years
– High industry satisfaction

• Participants get early access to leading edge 
research, mentoring of students, student 
recruitment
– Option for placement of industry engineers on 

campus
28



CAEML Benefits to Industry

• CAEML will help the member companies do 
business with each other
– By providing robust models and tools

• IP-obscuring models allow for flow of critical 
information between customers and suppliers
– Rationale for the industry to have developed IBIS
– Machine learning will provide models of much wider scope 

and accuracy than IBIS can support
• CAEML’s foundational research on ML can be 

applied to applications of specific interest to one 
company
– By its own engineers
– By CAEML students during industry internships
– Under a separate, sponsored research project
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Participating Faculty

• University of Illinois at Urbana-Champaign
– Andreas Cangellaris
– Maxim Raginsky
– Jose Schutt-Aine

• Georgia Institute of Technology
– Chuanyi Ji

• North Carolina State University
– Rhett Davis
– Brian Floyd

• Site directors: Rosenbaum (UIUC), Swaminathan (GT), 
Franzon (NCSU)
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Time Line
• Spring/Summer 2015: Cement commitment of industry 

partners to attend the planning meeting.
• Spring/Summer 2015: Recruit additional prospective industry 

members
– National labs and industry associations also eligible for membership

• Spring/Summer 2015: Hold discussions with prospective 
partners; learn more about their research needs

• November 2-3, 2015 at UIUC: Planning grant meeting.
– Attendees: NSF representatives, participating faculty, 

representatives from interested companies, Center evaluator
– Objective: Familiarize industry reps with administrative (legal, 

financial, organizational) details of I/UCRC
– Objective: Obtain industry rankings and feedback for proposed 

research projects
– Goal: Have industry representatives recommend that their 

companies join the CAEML
• March 2016: Submit full center proposal to NSF.

– Based on industry interest and support, research may begin in 
advance of center award
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