Greetings from Georgia Tech

Integrated Approach to Power Delivery for Electronic Systems (An Industry/University Consortium)

Georgia Institute for Electronics Tech and Nanotechnology

Madhavan Swaminathan John Pippin Chair in Electromagnetics School of Electrical and Computer Engineering Director, Interconnect and Packaging Center

Outline

Overview

- Integration trends and Power Delivery
- Industry/University Consortium
 - Consortium Model & Details
 - Thrust Areas
- □ Facilities
- □ Summary

Overview

Ref: M. Swaminathan and K. Han, "Design and Modeling For 3D ICs and Interposers", WSPC 2013

- Volume of Systems is decreasing
- Functionality is increasing
- Made possible through <u>Moore Scaling</u> (IC) & More than Moore Scaling (Packaging)
- Providing CLEAN POWER is becoming a major challenge

- Multitude of systems
- Each system class with unique power requirements
- Poses unique challenges for POWER DELIVERY

3/21

Nireles

Senso

No.2

/ireles

Senso

No.3

Wireles

Senso

No.4

Wireles

□ Challenges with Integration (partial list)

- Need for high speed & high efficiency Integrated Voltage Regulators
- Integration of high density storage elements such as Caps and Inductors
- Wireless power transfer with buck/boost converters and integrated battery
- Power distribution/Isolation networks with minimum decoupling capacitors
- Rectifier less energy conversion & Energy Harvesting from far field
- Architectural level power management

Industry-University Consortium

□ To address the integration challenges for Power Delivery,

Georgia Tech proposes a Industry/University Consortium

- Launch date: Sep 15, 2015
- Consortium Model
 - Based on industry membership (\$60K/year for 2 years min.)
 - Pre-competitive research
 - 6 year duration with 2 year long projects
 - Industry joins for a minimum of 2 years
 - Industry defines and mentors projects working with faculty & students
 - Access to students, research trained in power delivery, for internship or full time positions
 - Consortia wide Non Exclusive Royalty Free (NERF) IP Model
 - Technology transfer to industry
 - Significant Leveraging through IEN/GT investment

Consortium Details

Four Thrust Areas

- Thrust I: Integrated Voltage Regulators
- Thrust II: Power Distribution
- Thrust III: Wireless Power Transfer
- Thrust IV: Power Delivery Solutions for Self Powered IoT Devices
- Projects cut across thrusts
 - Integrated approach to power delivery
 - Industry joins consortium (not thrust)
 - Industry defines and mentors projects working with faculty
- □ Project scope and Duration
 - Design Build Characterize Deliver
 - 2 year deliverable with technology transfer
 - Fabrication either by industry or/and Georgia Tech
- An Integrated Industry/Faculty/Student/Management Team
 - Faculty with complementary expertise
 - Students mentored by industry
 - Managed by Full time Center Staff

Integrated Team

PhD

Mukhopadhyav

PhD

Arijit Raychowdhury PhD Madhavan Swaminathan PhD

Hua Wang PhD

Sudhakar

Yalamanchili PhD

George E White

Dean Sutter

Faculty Expertise

- RF/Wireless
- IC/Package Design
- Control
- Passives
- Integration 2D/2.5D/3D
- Packaging
- Architecture
- Co-Design
- IVR/LDO
- Harvesting
- Battery

Prior Work (published) & Know How

Georgia Institute of Technology

Sep 17, 2015

7/21

Frequency (GHz)

Integrated Approach to Power Delivery

Thrust I: Integrated Voltage Regulators Thrust Leader: Prof. Arijit Raychowdhury

□ Objective

Develop new circuits and topologies for integrated DC-DC converters and voltage regulators in conjunction with micro-architecture for energy-efficient and fine-grained spatio-temporal power management with wide dynamic ranges.

Tasks

- 1. Integrated Buck Converters
- 2. Switched Capacitor IVRs
- 3. Linear point-of-load (PoL) IVRs
- 4. Embedded Passives
- 5. IVR enabled Microarchitecture level Power Management

Technical Approach

Embedded Passives in-package and on-die

High density inductors and capacitors

Application of IVRs in micro-architectural power management

- Enable fine-grained spatio-temporal power management
- Interaction of IVRs with system states, DVFS states

10/21

Thrust II: Power Distribution

Thrust Leader: Prof. Madhavan Swaminathan

Develop new techniques and technologies in conjunction with microarchitecture level power management methods that provide best a) power integrity; b) signal integrity and c) isolation using minimum components, real estate and power consumption

Tasks

Objective

- 1. Embedded Inductors
- 2. Embedded Capacitors
- 3. Alternate Methods
- 4. Isolation Techniques
- 5. Microarchitecture level Power Management

Georgia Institute of Technology

Technical Approach

Georgia Institute of Technology

Thrust III: Wireless Power Transfer

Thrust Leader: Prof. Hua Wang

Objective Develop new technologies to achieve high-efficiency far-field radiation based power transfer ($10 \times to 100 \times efficiency$ improvement). Applications include mobile devices/local "wireless power hub", moving robots or UAVs, wireless sensor networks, IoT devices.

Tasks

- High-Efficiency, Power-Scalable, and Freq.-Agile RF Power Amplifier for 1. **DC-to-RF** Conversion
- **Reconfigurable/Self-Optimized Radiation** 2.
- **RF Energy Harvester for RF-to-DC Conversion** 3.
- Adaptive and Tunable Passive Networks 4.

Georgia Institute of Technology

Technical Approach

Task 1 DC-to-RF •High-Efficiency PA Architectures at Peak/Back-Off P _{out} •Multi-Band or Broadband PA Operation •PA/VR Co-Designs •PA/Novel-Passive Devices Co-Designs	 Task 2 Radiation Phased-Array for Reconfigurable Beam- Forming, EIRP Enhancement, and Mobile Device Tracking Ultra-Low-Power Array Co-Design with Novel Passives 	 Task 3 RF-to-DC High Efficiency Harvester (especially at Low Received RF Power Level) Co-Designs with VR/Integrated Battery Architecture-Level Optimization 	 Task 4 Passive Networks Antenna Load Tuning P. V. T. Variations Co-Designs with Novel Passives
Output Reword Image: Control of the second seco	Provide the second s	PCB Board PCB Board Port #5 (2L) Port #6 (1R) Port #7 (1L) Port #8 (2R) Port #8 (2R) Port #0 Port #8 (2R) Port #0 Port #5 (2L) Port #1 Port #1 Port #5 (2L) Port #1 Port #1 Port #5 (2L) Port #1 Port #1 Port #1 Port #5 (2L) Port #1 Port #1 Por	Ant #1 Ant #2 Ant #3 Ant #4 Ant #4
Dirent with (b)		40 1 1 1 1 1 30 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0	^{14/21}

Georgia Institute of Technology

Thrust IV: Power Delivery Solutions for Self-Powered Internet-of-Thing Devices

Thrust Leader: Prof. Saibal Mukhopadhyay

Objective

Design of power management solutions for ultra-low-power devices. The thrust will develop technologies in three major areas: (a) integrated energy sources; (b) integrated voltage conversion/regulation; and (c) power delivery and conditioning system with on-line management.

Tasks

- 1. Integrated energy storage battery and high-density capacitor
- 2. Energy transfer through near-field coupling
- 3. Low-power/Low-voltage inductive converters with wide conversion ratio
- 4. Power Delivery and Conditioning System with On-line Management

Technical Approach

Georgia Institute of Technology

Example Projects

Important that projects cut across thrusts

Project	Thrust I					Thrust II				Thrust III				Thrust IV				
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 1	Task 2	Task 3	Task 4	Task 5	Task 1	Task 2	Task 3	Task 4	Task 1	Task 2	Task 3	Task 4
1	Х				х	х		Х										
2			х					X	х				Х	Х				
3						х		Х					Х		Х	Х	Х	Х

Project 1

- Application: High Perf/FPGA
- Integrated inductive buck VR
- Power Management
- Embedded inductors
- Embedded capacitors
- Power distribution methods

Project 2

- Application: RF Energy harvesting (far field)
- Passives Tuning
- Linear regulation
- Power Distribution
- RF passives
- Isolation

Project 3

- Application: IoT
- Near/far field coupling
- Embedded inductors
- Rectifier less DC conversion
- Integrated battery
- Power Management

Georgia Institute of Technology

Sep 17, 2015

Facilities Experience in electronics design

- & micro/nano fabrication
- Recent formation of the Institute
- of Electronics and Nanotechnology (IEN)
 - 9 Centers
 - Interconnect & Packaging Center (IPC)
 - Power Delivery Consortium

Marcus & Pettit Laboratories

30,000 square feet of clean room

□ State of the art measurement facility

- High Speed Equipment
- 325GHz RF labs;40Gbps Digital labs
- Digital w/ PC & FPGA interfaces for automatic & scan based testing
- Direct probing
- Low current, low power with sub nA and sub nW precision

□ State of the art Design Facility

 Large Computer Clusters with Design & Analysis Software

What can a Company Expect by joining the Consortium?

- Access to leading edge <u>precompetitive</u> research on Power Delivery that combines IC, Package, their interactions and their integration for a suite of applications
- Definition and mentoring of a project aligned with other company needs that maximizes ROI
- □ Access to <u>all projects</u> in the consortium
- IC design, package/module design, fabricated IC/package/module, models and measurements (details provided in the thrust presentations)
- Access to students, research trained in power delivery, for internship or full time positions
- Access to world class faculty focusing on power delivery
- Inclusion of <u>specific technologies</u> from company members through supplemental projects (protected by NDA, Additional \$\$):
 - Example 1: Module designed using substrate technology supplied by Company A using the same chip sets. Substrate fabrication and assembly done by Company A. Modeling and measurements by Georgia Tech
 - Example 2: Power Inductors and/or capacitors supplied by Company B assembled on module. Modeling and measurements by Georgia Tech.

Schedule

□ Webinar – Nov. 19, 2014 (Attendance: 120+)

Slides and White Paper available

□ Jan. 2015 – May 22, 2015

- Several individual meetings with companies
- Used to shape the specifics of thrust areas
- This will be seen in the thrust presentations
- Several companies interested in joining
- □ Today's workshop
 - Collect additional input and feedback from industry
 - Use to finalize consortium scope
- Condensed workshop in San Diego
 - May 25, 2015
 - Additional input and feedback from industry
- □ May 25, 2015 Sep 1, 2015
 - Individual conf. calls or F2F meetings with companies (as required)

□ Launch consortium – Sep 15, 2015

Sep 17, 2015

Summary

Georgia Tech just launched an Industry/University Consortium titled "Integrated Approach to Power Delivery for Electronic Systems"

- Launch Date: Sep 15, 2015
- \$60K/year membership for 2 years (min)
- Member company can define a project
 - Cuts across atleast two thrusts
 - Aligned with other companies to maximize ROI
 - SIP Solution for Power Delivery
 - Focus is on Design, Modeling and Measurements
- Details on Consortium Membership & Execution (Contact: Dean Sutter)
- We look forward to welcoming you to join the consortium on <u>Power Delivery for Electronic Systems (PDES)</u>

Thank You

Georgia Institute of Technology

May 22, 2015